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The cases when an exact solution for the Navier-Stokes equation can be obtained. are 
of 

P 
articular interest in investigations of the viscous fluid flows. 
ew such solutions are known for a viscous, heat-conducting gas, e. 

8’ 
me solution 

obtained in [I] for the case of a viscous gas flow in a conical nozzle w en the heat 
transfer at the wall is governed by a special law. It is also shown that such self-similar 
flows are absent in the case of a channel with plane walls. 

In the present paper we show that in this case we can (under certain well defined con- 
ditions) reduce the Navier-Stokes equations to a system of ordinary differential equat- 
ions whose solution can be obtained either in a closed form (provided that certain vis- 
cosity laws are observed) or numerically. 

1. Hamel’s solution for a flow of a viscous, incompressible fluid between two mutu- 
ally inclined plane walls, represents one of the exact solutions of the hydrodynamic 
equations. 

Assuming that its analog exists for the case of a viscous heat-conducting gas, we shall 
seek a solution of the Navier-Stokes equations written in polar r, B -coordinates, in the 
following form 

u=a(cp), “=o, h=h(cp) 

where TV, and 10 are the radial and tangential velocity components and: h is enmalpy. 
Equations of energy, impulse and continuity and the equations of state are (we con- 

sider the case of a perfect gas) 

g (r’p%“) = 0, xM&P = pw 

Here the dimensionless quantities #‘, u”,po, p’, A0 and PO-are defined by 

where p is the pressure, p is the density, p is the coefficient of viscosity, x is me 
ratio of specific heats, u is handtl number, M is Mach number; g, ps, As,, h and 
Ms denote the values of the respective quantities at the distance r, from the coordi- 

nate origin with q arbitrarity fixed (e.g. cp = 0) and Z? * is the Reynolds number 
which is constant. 

We shall investigate the power dependence of the coefficient of viscosity on temper- 
ature p N h”, although, as we shall see below, self-similar solutions exist for an arbi- 
trary relationship p (h). 
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If can easily be shown that the system (1.1) reduces to a system of ordinary differen- 
tial equations (from now on we shall omit the superscript 6 accompanying the dimen- 
sionless quantities). 

Equation of continuity yields rpo - @(f#) which, together with the equation of state, 
gives 

(f -2) 

Further, inserting (1.2) into the first two equations of (1.1) and integrating the energy 
equation once with respect to cp, we obtain 

d dv 4 
drp ‘LT =gr*-- c > 

The constant of integration C characterizes tie magnitude of the heat flux across 
the channel walls. 

Since the heat flux across each wall is equal to its counterpart in magnitude and oppo- 
siEwi;;i 

e! 
n, therefore the heat content is constant along the streamlines although the 
not be symmetric. 

Assuming that the value gl = 0 corresponds to the condition du I dip = 0, we can 
regard the system of ordinary differential equations in u, li and p, as a system with 
imtial conditions a -_ i, dv J dq = 0, k li; 1, and ps = i when cp = 0. The corresp- 
onding angles of inclination of the channel walls to the plane $ - 0 in the positive 
and negauve direction are obtained, after inte 
and C) from the condition of zero velocity on %o 

rating Eqs. (1.3) (with given R, M, 
th walls. 

System (1.3) with given initial conditions can be solved for the coefficient of visco- 
siq depending arbitrarily on temperature by any numerical method on a digital compu- 
ter. 

2. In the following we shall consider symmetric flows only (without the heat uans- 
fer through the walls of the channel) when C = 0. 

Integrating the last equation of (1.3) we obtain, independently of the law governing 
the viscosity, 

h=l +a? hf’ (1 - v’) (2.1) 

From this it follows that the coefficient of recombination of enthalpy (temperature) 
at the wall is equal to u 
nel). 

( M denotes the Mach number along the axis of the chan- 

Thequantities Rftc@=a,o(~-i)Ms~2-@ and n -~~werindex~~e 
formula for the viscosity coefficients, are used as parameters of the system under con- 
sideration. 

Putting further Rp, Ix W = Pa, we find that (P,&, i= a. 
When n = 0.5 and 1, the problem has an analytic solution as for n = 0. Thus, 

integrating the second equation of (1.3) we obtain the following relationship between 
P I and Y: 

(n = 0.5) Pa(v)=a- 
[ 

11 i+p 
s+2$fp 

- arc&n (A>“1 + 
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When p = 0, which corresponds to M =I 0 and to n p i or o = 0 with M ar- 
bitrary , both expressions yield an identical result 

P, (P) = a - 7/* (i - V) 

From (2.2) we see that in the general case the dependence of P, on u need not be 
monotonic and P, will have its minimum value when v F 0. 

We can also use (2.2) to establish the smallest values which can be assumed by a 
for the given $, 

Obviously, the condition P, (0) = 0 at the wall will corms ond to the minimum 
value of a_ and in this case the channel walls divergence will L at the maximum. 
Thus we have 

(nc0.5) a&a, =y+z 
‘I1 

arch 
( ) 

P 
‘+P 

(2.3) 

which shows that the relations between the minimum value of a, and fl are different 
for R = 0.5 and 1 (for large fl the corresponding relations are proportional to ds 
and B). 

It remains to integrate the first equation of (1.3) which (taking into account (2.1) 
and (2.2)) can be written as 

V 
d, 

- w (4 w - Q (4 (2.4) 

where the prime denotes the differentiation with respect to 0 and where the following 
notations are introduced: 

Performing the following variable substitution v’ = t (a) in (2.4) (see e.g. la]), we 
obtain 

s’ + n (4 s - Q 09 (2 = l/, f’, n (v) = - 2w (v)) (2.5) 

where the prime denotes differentiation with respect to o. 
Then 

I = e-V to) 
IS 

Q (v) xv (‘) dv + Cl ] (W=Sn WV) W) 

will be the general solution of (2.5). 
Solution of (2.4) can be written as 

,=*&+c* (2.7) 

Integration constants Cr and C, should be obtained from the condition I = 0 and 
Q P 0 when v = 1. 

It remains to compute the integrals giving explicit dependance of the radicand in 
(2.7) on v and then to obtain the dependance of q (v). We shall omit the detailed 
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procedure and quote the final results. Thus for n = 0.5 we have 

ZI (4 
q=arccos~ 

I+3 
II (0) = v/2 ,’ I + p (1 - 17’) + -arc sin v 

(2.8) 

Aa=a-ao, 

from which it follows that for any fj the maximum half-angle of divergence of the 
channel walls Olo is obtained and is equal to I/, n at Aa = 0 (a = a,). 

We can obtain a number of the limiting expressions derived from (2.8). For example, 
when fI=O(M=O ,or x=1, or u=o),wehave 

v = (i + Aa) cosq - Aa (2.9) 

The case p-+ oo corresponds to M+ 00 or u-00. Assuming in addition that 
Aa s 0, we obtain 

cp = arc co9 
[ 
$v If1 - v* + arc sin 0) 1 (2.10) 

Similarly, for n = i we have 

11 (4 cp = mcos Al (ZsP)=(l i-P)B-*htW+Aa) (2.11) 

from which it follows that for any value of 
of the channel walls is obtained for Aa 

p the maximum half-angle of divergence 
= 0 , and that it is again equal to */s n. The 

limiting expression resulting from (2.11) for p = 0 and Aa is assumed finite, coin- 
cides with (2.9)) becoming however 

q - arc cos (VI v - Y, 9) (2.12) 

when p-+oo and Aa=O. 
When n=l , the formula (2.12) assumes a distinct feature, lamely (see e.g. ~a]) 

the quantity (do I dg),s is not equal to zero, but to 
the fact that two limit values n 

-1 I v3. This is explained by 
= i and p-+ 00 affect each other. 

Next we shall investigate the behavior of the solutions (2.8) and (2.11) obtained for 
the case when the angle of divergence of the channel walls is small (~w 4 4). Taking 
into account the smallness of $,, we have from (2.11) 

which shows clearly that the present case can occur when u %a.. This means mat 
sufficiently high values of R are necessary for the self-similar flows with moderate 
or large values of M to exist in such channels. 

Rearranging (2.13) and neglecting the quantity ‘/I as compared with a, we obtain 

ww = 2 (1 + ‘1, B) x J4’ (2.14) 



Using (2.8) and (2.11) we can obtain the relationship between the velocity and 

rl=9lcp, 

(n=0.5) ?p=f-$fj 

Jl (F) = 0,)/t+) + q arc sin 0 (~~) 
(2.15) 

Thus we see from (2.14) and (2.15) that when the thermal and physical properties 
(x, a, n) of the gas flow are given and the values of the parameter a P R / x @ are 
large, then all gasdynamic quantities have identical profiles with respect to the redu- 
ced coordinate q = q ! q;e in the channels possessing varying angles of divergence, 
provided that the quantity RoWa 7 f (x, o, n, M) is kept constant. 

For M = 0 (fi =: 0) , we obtain from (2.14) and (2.15) a parabolic velocity profile 
and qr,,, = 0 (R can be arbitrary), i.e. the Poiseuille flow in a channel of constant 
cross section. 

For n = i and /3+ 00, formulas (2.15) and (2.12) yield (do f W,,+ - m 
For small values of ‘is (a>@,), taking into account (2. ‘A), we find that me redu- 

ced transverse pressure p/p, (pa denotes the pressure at the axis) is 

i.e. the pressure across the channel can be assumed constant to within the terms of the 
order of (i /a) . 

Considering flows in the channels with small angles of diver 
cular. that the aonroximate boundarv laver eauations i*I 

ence we find, in parti- 
use B to describe the viscous _.- , 

gas flows in such‘~hanne~ , represeni the limiting forms bf the Navier-Stokes equations 
obtained when ‘pie+ 0. 

Moreover, expressions obtained in (*) for computing the transverse velocity profiles, 
coincide with (2.15) given here. 

Figs, 1 to 5 show some results of computation. Thus, Fig, 1 and 2 give the velo- 
city and pressure profiles in the transverse section of the channel for a = a+ and Fig. 3 
and 4 for a = 100 at p = 0, i, 10 , relative to the quantity Cp /VW. . 

Fig. 1 Fig. 2 
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Fig. 3 

PI 
Fig. 4 

Influence of the power index _ n in the viscosity law on the reduced characteristic 
curves is shown clearly. In addition, computed curves corresponding to n = 0.76 (air) 
which were obtained by numerical integration, are given for a = 160 and B = 10 . 

Fig. 5 shows the relation between the half- 
angle of divergence of the channel walls tw 
and a for fixed B. 

Fig. 5 

We note that the solution of the problem 
of the flow of a viscous, heat conducting gas 
in a channel can be generalized to the case 
of the rarefied gas flow with slip. 

Since in the given case we vary only the 
boundary conditions at the wall, the structu- 
re of the solution will remain unchanged, but 
the angle of diver 
will be different or the given values of a fg 

ence of the channel walls 

and $. 
Moreover, a - i I K.n M where Kn = 

= li / rl is the Knudsen number and l1 is 
the mean free path of a molecule, defined 
in terms of the axial flow parameters at the 
distance rr. 
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